
Complementary Attention Gated Network for Pedestrian Trajectory Prediction

Jinghai Duan1, Le Wang2*, Chengjiang Long3

Sanping Zhou2, Fang Zheng1, Liushuai Shi1, Gang Hua4

1School of Software Engineering, Xi’an Jiaotong University
2Institute of Artificial Intelligence and Robotics, Xi’an Jiaotong University

3JD Finance America Corporation, 4Wormpex AI Research
{caesardjh98,zhengfang,shiliushuai}@stu.xjtu.edu.cn, {lewang,spzhou}@xjtu.edu.cn, {cjfykx, ganghua}@gmail.com

Abstract
Pedestrian trajectory prediction is crucial in many practical
applications due to the diversity of pedestrian movements,
such as social interactions and individual motion behaviors.
With similar observable trajectories and social environments,
different pedestrians may make completely different future
decisions. However, most existing methods only focus on
the frequent modal of the trajectory and thus are difficult to
generalize to the peculiar scenario, which leads to the de-
cline of the multimodal fitting ability when facing similar
scenarios. In this paper, we propose a complementary atten-
tion gated network (CAGN) for pedestrian trajectory predic-
tion, in which a dual-path architecture including normal and
inverse attention is proposed to capture both frequent and
peculiar modals in spatial interactions and temporal motion
patterns, respectively. Specifically, a complementary block is
proposed to guide normal and inverse attention, which are
then be summed with learnable weights to get attention fea-
tures by a gated network. Finally, multiple trajectory distribu-
tions are estimated based on the fused spatio-temporal atten-
tion features due to the multimodality of future trajectory. Ex-
perimental results on the popular benchmark datasets, i.e., the
ETH, and the UCY, demonstrate that our method outperforms
state-of-the-art methods by 13.8% in Average Displacement
Error (ADE) and 10.4% in Final Displacement Error (FDE).
Code will be available at https://github.com/jinghaiD/CAGN

Introduction
Pedestrian trajectory prediction aims to predict the future
trajectory based on the observed trajectory. It plays an im-
portant role in many applications, such as automatic driv-
ing (Bai et al. 2015; Luo et al. 2018), visual recogni-
tion (Donahue et al. 2015; Hua et al. 2018; Hu, Long, and
Xiao 2021; Long and Hua 2017; Islam, Long, and Radke
2021), anomaly detection (Liu et al. 2021), human motion
prediction (Dang et al. 2021), and traffic early warning sys-
tem (Luber et al. 2010; Yasuno, Yasuda, and Aoki 2004;
Alahi, Ramanathan, and Fei-Fei 2014).

Although significant progress has been made recently,
pedestrian trajectory prediction is still challenging due to
the complex traffic scenarios. For example, pedestrians be-
hind are prone to follow the trajectories of those in front (Yi,
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Figure 1: Real scenarios A and B represent frequent and
peculiar modals with similar inputs and different outputs,
respectively. (Spatial Interaction) Diverse spatial interac-
tion, including frequent and peculiar spatial interaction, is
generated by fusing complementary attention via the gated
network. (S.a) Frequent interaction processed by normal at-
tention. (S.b) Peculiar interaction processed by inverse at-
tention. (Temporal Motion) Diverse temporal motions, in-
cluding frequent and peculiar temporal motions, are gener-
ated by fusing complementary attention via the gated net-
work. (T.a) Frequent motion processed by normal attention.
(T.b) Peculiar motion processed by inverse attention.

Li, and Wang 2016), people tend to turn at a random angle
to avoid collisions (Sun, Jiang, and Lu 2020), and pedes-
trians who walk in groups perform the different from those
who walk alone (Mohamed et al. 2020). In addition, differ-
ent pedestrians show different behaviors when dealing with
similar situations in specific scenarios because of the differ-
ence in intentions or habits as shown in Figure 1.

Recently, the attention mechanism (Vaswani et al. 2017)
achieves excellent progress in capturing spatial interactions
between pedestrians and modeling temporal motion of tra-
jectory sequence. Due to the data-driven learning strategy,
prior attention-based methods (Kosaraju et al. 2019; Yu et al.
2020; Shi et al. 2021; Zheng et al. 2021) easily collapse into
the frequent data modal representing major common sce-
narios. Namely, they are difficult to generalize to peculiar
scenarios taking place sometimes or not covered in training
data. Since the behaviors of pedestrians are naturally random
and diverse, frequent information will mislead the attention
model to focus only on common scenarios and ignore other
possibilities of pedestrian movements.

As an example of frequent and peculiar scenarios illus-
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Figure 2: The framework of our CAGN. We first generate a pair of complementary masks through the complementary block
to guide the normal and inverse attention. After that, we leverage a gated network to adaptively fuse the dual-path spatio-
temporal features represents frequent and peculiar scenarios. Finally, an MLP generates the Gaussian mixture distribution of
the trajectory endpoint, from which multiple predicted trajectories are sampled. The red dashed line input indicates that the
ground truth of the endpoint is used only in training process for generating other future trajectory positions except the endpoint.

trated in Figure 1, Scenarios A and B represent frequent and
peculiar modals with similar inputs and different outputs,
respectively. Scenario A in spatial interaction as shown in
(S.a) represents the frequent modal that the green pedes-
trian avoids the collision with the purple group pedestrians.
In contrast, Scenario B as shown in (S.b) represents the pe-
culiar modal that the green pedestrian does not interact or
weakly interacts with the purple group though they have a
similar historical trajectory. Similarly, Scenarios A and B in
temporal motion show the frequent and peculiar temporal
motions, respectively. Pedestrians will walk along the his-
torical motion direction as shown in (T.a) if the model de-
cides by the frequent motion. (T.b) represents the peculiar
motion that pedestrian chooses a different destination com-
pared with Scenario A. Therefore, the pedestrian trajectory
prediction will suffer from collapsing into frequent modal
and fail to generalize to peculiar cases if we directly use the
normal attention mechanism by popular data-driven meth-
ods both in spatial interaction and temporal motion.

In order to generalize to peculiar modal and do not hurt
the frequent modal, a better approach is to design a comple-
mentary attention counterpart and integrate the normal and
inverse attention by a gated mechanism as illustrated in Fig-
ure 1 (Spatial Interaction) and (Temporal Motion). After
finished, the gated network can balance these two types of
modals and thus predict more accurate trajectories.

Motivated by this, we propose a novel complementary at-
tention gated network named CAGN, which captures fre-
quent and peculiar modals in spatial interaction and tempo-
ral motion. CAGN applies a dual-path architecture includ-
ing normal attention and inverse attention, as presented in
Figure 2, which is designed to capture both frequent and pe-
culiar modals. Specifically, the spatio-temporal complemen-
tary attention learning module is proposed to learn normal
and inverse spatial interaction and temporal motion through
our proposed complementary block as illustrated in Fig-
ure 3. A normal attention mechanism is first used to gen-
erate a normal asymmetric attention matrix, which is then
sent to a convolutional module to obtain the complemen-
tary mask. Thus, the normal and inverse attention can be ob-

tained by the generated complementary mask. Moreover, a
gated mechanism (Chung et al. 2015; Shazeer et al. 2017)
is employed to generate diverse attention features by fus-
ing the normal and inverse attention features with learnable
weights. By combining the spatial and temporal diverse at-
tention features, the results are finally fed into a mixed Gaus-
sian model (Reynolds 2009; Zheng et al. 2021) to estimate
the multi-distribution of future trajectory inspired by the
multimodality of trajectory (Mangalam et al. 2020).

Extensive experimental results on the ETH (Pellegrini
et al. 2009) and UCY(Lerner, Chrysanthou, and Lischin-
ski 2007) datasets show that our method outperforms all
the competing state-of-the-art methods. To the best of our
knowledge, this is the first work that explicitly models the
peculiar spatial interaction and temporal motion. In sum-
mary, our contributions are three-fold:
• We propose to model the frequent and peculiar spatial in-

teraction and temporal motion to improve trajectory pre-
diction.
• We design an adaptive complementary attention module

that can not only focus on the frequent modal of data but
also take account of the peculiar modal.
• Our method improves the state-of-the-art performance by

13.8% in Average Displacement Error (ADE) and 10.4%
in Final Displacement Error (FDE) on ETH and UCY.

Related Work
Pedestrian Trajectory Prediction. Thanks to the power-
ful representation of deep learning, pedestrian trajectory pre-
diction achieves remarkable progress. Social-LSTM (Alahi
et al. 2016) extracts the trajectory feature of each pedes-
trian through a Long Short-Term Memory (LSTM) (Hochre-
iter and Schmidhuber 1997), and integrates hidden states
of pedestrians in a certain area by a pooling mechanism.
A series of deep learning-based methods (Lisotto, Cos-
cia, and Ballan 2019; Hao, Du, and Reynolds 2018; Liang
et al. 2019; Lee et al. 2017; Tao et al. 2020; Zhang et al.
2019) improve the accuracy of trajectory prediction by us-
ing visual information. SGAN (Gupta et al. 2018) uses a



generative adversarial network (GAN) (Felsen, Lucey, and
Ganguly 2018) to tackle multimodal trajectory prediction.
RSBG (Sun, Jiang, and Lu 2020) introduces the prior knowl-
edge of kinematics experts to learn pedestrian interaction.

Some works employ the variational autoencoder (VAE) to
model the future multimodal trajectory (Liang et al. 2020;
Pang et al. 2021) by embedding the future multimodal tra-
jectories into a latent space. PECNet (Mangalam et al. 2020)
embeds the endpoint into a latent space by the conditional
variational autoencoder (CVAE) architecture. DisDis (Chen
et al. 2021b) further studies the latent space and proposes to
select more useful variable code sampling from the learnable
latent space.

With the application of graph network model in trajectory
prediction (Yu et al. 2020; Mohamed et al. 2020; Ivanovic
and Pavone 2019), Social-STGCNN (Mohamed et al. 2020)
uses a spatio-temporal graph to represent spatial interac-
tion and temporal trajectory. Social-BiGAT (Kosaraju et al.
2019) and STAR (Yu et al. 2020) use the graph model and
attention mechanism (Vaswani et al. 2017) to model pedes-
trian interaction. SGCN (Shi et al. 2021) improves the graph
attention model by a learnable sparse graph both in interac-
tion and motion tendency. UNIN (Zheng et al. 2021) uses the
graph attention model and Gaussian mixture model (GMM)
to deal with multi-category trajectory prediction. What’s
more, TPNMS (Liang et al. 2021) proposes a pyramid struc-
ture to handle the relationship between global and local mo-
tion tendencies. DMRGCN (Bae and Jeon 2021) simulates
complex social relationships through multi-scale separation
and aggregation. In addition, a concurrent work (Chen et al.
2021a) proposes to address the deviation between training
and testing scenarios through counterfactual analysis.

In general, the previous methods mainly leverage social
interaction to capture accurate pedestrian interaction for var-
ious scenarios. However, pedestrians exhibit different be-
haviors when facing similar traffic scenarios because of mo-
tion intention and habit differences. Solely using the normal
attention mechanism, they will focus on the frequent modal
while ignore the peculiar modal. In contrast, our method pro-
poses to model inverse attention and fuses it with its normal
counterpart, and thus can not only capture peculiar modal
but also take account of the frequent one.
Self-Attention Mechanism. Self-attention is the core idea
of the transformer (Vaswani et al. 2017), which greatly im-
proves the performance in many sequence prediction tasks,
such as text generation (Yang et al. 2019), image caption-
ing (Dong et al. 2021), and image denoising (Yu et al. 2021).
By decomposing attention into query, key, and value vec-
tors, self-attention not only captures the dependencies be-
tween sequence elements but also avoids the gradient dis-
appearance of recurrent neural network (RNN). Since the
trajectory can naturally represent a temporal sequence, self-
attention can fit the trajectory prediction unexceptionally.
Besides, spatial interaction can be represented by a sequence
without temporal order.

However, due to the individual behaviors of different
pedestrians, the normal self-attention mechanism is difficult
to produce diverse attention results. In recent years, some
works use the inverse method to obtain extra information

discarded by the traditional attention model, e.g., pedestrian
counting (Si and Patel 2019; Liu et al. 2020). Inspired by
them, we use the complementary method to obtain both nor-
mal and inverse attention.

Our Approach
Problem formulation
Pedestrian trajectory prediction aims to predict the future
positions of trajectories. Given the trajectory coordinates
{(xnt , ynt )}

N,Tobs
n=1,t=1 of N pedestrians observed in the video

over time Tobs, our goal is to predict the future trajectory co-
ordinates {(xnt , ynt )}

N,Tpred
n=1,t=Tobs+1 of the N pedestrians from

time Tobs + 1 to Tpred.

Framework
As aforementioned, traditional attention-based methods
only focus on the most frequent modal of the data, resulting
in insufficient generalization to peculiar modal. To capture
the frequent and peculiar modals simultaneously, we pro-
pose the complementary attention gated network (CAGN),
as illustrated in Figure 2. Given {(xnt , ynt )}

N,Tobs
n=1,t=1, we first

extract the De-dimensional trajectory embedding Fin ∈
RTobs×N×De by non-linear multi-layer perceptron (MLP).
Then, we generate a pair of complementary social masks
through the complementary block to learn the dual-path at-
tention, resulting in focusing on both the diverse spatial in-
teraction and the temporal tendency of pedestrians. After-
wards, we leverage a gated network to fuse the dual-path
spatio-temporal features adaptively. Finally, an MLP is used
to generate mixed Gaussian distribution of trajectory end-
points, and different predicted trajectories are obtained by
sampling and interpolation from the distribution.

Spatial Learning via Complementary Attention
Complementary Block. To generate the peculiar modal as
well as the frequent modal in spatial interaction, we first ex-
tract the multi-head interactions S between pedestrians by
the multi-head attention mechanism (Vaswani et al. 2017)
based on the embedding Fin as follows:

Qi = φ
(
Fin,W

Q
i

)
,

Ki = φ
(
Fin,W

K
i

)
,

Ai = Softmax

(
QiK

T
i√

dk

)
,

S = Concact(Ai), i = 1, 2, . . . ,H,

(1)

where φ (·, ·) denotes linear transformation, and i is the in-
dex of H heads. Qi ∈ RTobs×N×Dq and Ki ∈ RTobs×N×Dk

are the query and the key of the attention, respectively. WQ
i

andWK
i are the weights of the linear transformation.

√
dk =√

Dk is the scaled factor. Ai ∈ RTobs×N×N denotes the at-
tention score of the i-th attention head. S ∈ RH×Tobs×N×N

is the multi-head attention matrix over all time steps.
Shtij ∈ S represents the quantified interaction value be-

tween the i-th and the j-th pedestrian on h-th head of t-th
frame. Due to the different linear transformations of query
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Figure 3: Spatial complementary attention gated network of our CAGN. Complementary block maps the interaction through
multi-head attention and convolution neural network. By setting the threshold, a pair of complementary social masks are
obtained to guide the dual-path attention to focus on frequent and peculiar interactions. Finally, the spatial features can be
weighted-summed through the gated network.

and key, the attention matrix is intrinsically asymmetric.
Since the multi-head attention values come from different
subspaces (Vaswani et al. 2017), we fuse them by a convo-
lution network at the head dimension and further map the
convolutional results to [0, 1] via a sigmoid function:

J = δ (Conv (S,K)) , (2)

where K denotes the 1× 1 convolution kernels, δ is the sig-
moid function, and J ∈ RTobs×1×N×N denotes the interac-
tion logits based on normal attention.

As the peculiar attention is complementary to the normal
attention, an all one matrix O is used to subtract J to ob-
tain inverse attention logits Jinverse. A classification is then
operated on J and Jinverse to generate the masks Mnormal and
Minverse, i.e.,

Mnormal = I {J ≤ ξ} ,
Minverse = I {(O − J) ≤ ξ} , (3)

where I{·} is an indicator function, and it equals 0 if the in-
equality holds, otherwise 1. ξ is the classification threshold.

Once obtained Mnormal and Minverse, they will be multi-
plied with the subsequent dual-path attention to obtain fre-
quent and peculiar attention features.
Dual-Path Spatial Attention. In order to capture both the
frequent and peculiar modals of trajectory, we design a
dual-path attention structure to generate the normal and
inverse spatial interaction guided by Mnormal and Minverse.
Similar with the attention matrix S, we first employ the
multi-head attention mechanism to calculate the attention
score Â ∈ RH×Tobs×N×N . Then the normal attention
T spa

normal ∈ RH×Tobs×N×N and peculiar attention T spa
inverse ∈

RH×Tobs×N×N are generated by the Â and masks:

T spa
normal = Softmax

(
Â�Mnormal

)
,

T spa
inverse = Softmax

(
Â�Minverse

)
,

(4)

where � denotes element-wise multiplication
Upon the frequent and temporal attention matri-

ces, two Df -dimensional attention features F spa
normal ∈

RH×Tobs×N×Df and F spa
inverse ∈ RH×Tobs×N×Df can be

obtained by matrix multiplication like last step of self-
attention.
Gated Network. With the normal and inverse attention fea-
tures, it is expected the model can identify which modal
of learned features is suitable for specific traffic scenarios.
Therefore, we employ the gated mechanism to learn the
weights fusing normal and inverse attention features. Mo-
tivated by this, the gated network integrates the F spa

normal and
F spa

inverse to compute the final spatial feature as:

Rspa
normal = φ

(
F spa

normal,W
r) ,

Gspa
normal = δ(φ

(
F spa

normal,W
g)), (5)

where W r and W g are learnable weights of linear projec-
tion. δ is the sigmoid function.Rspa

normal andGspa
normal denote the

intermediate features and the weights of gated mechanism
respectively, and they have the same shape with F spa

normal.
Similarly, Rspa

inverse and Gspa
inverse can be obtained in a

same way. The final spatial interaction features F spa ∈
RTobs×N×Dfinal are gained by the stacked intermediate fea-
tures R̂spa and normalized stacked the weighted score Ĝspa

as:
R̂spa = Rspa

normal ⊕R
spa
inverse,

Ĝspa = Gspa
normal ⊕G

spa
inverse,

F spa = R̂spa � Softmax(Ĝspa),

(6)



where ⊕ denotes the concatenated operation.

Temporal Learning via Complementary Attention
Following spatial learning via complementary attention,
we learn the temporal motion features in a similar way.
As illustrated in Figure 2, the output F spa is fed into
the temporal learning via attention module after reshaped
into RN×Tobs×Dfinal to obtain the corresponding intermediate
products. The framework diagram of the temporal learning
via complementary attention will be placed in the supple-
mentary materials. Through the whole process, the spatio-
temporal features F st with frequent and peculiar attention
and are gained to generate the trajectory distribution.

Trajectory Prediction
Considering the multimodality of future trajectory, namely
given an observed trajectory, pedestrians could take multiple
possible future trajectories, we use a GMM to estimate the
final trajectory distribution.

In the training process, the spatio-temporal features F st

are fed into a simple MLP network to generate the mixed
Gaussian distribution of the trajectory endpoints and we use
the ground truth of the endpoints and F st to train a simple
MLP network to generate other frames of the future trajec-
tory. In the inference process, GMM is used to generate the
predicted trajectory endpoints through sampling to replace
the ground truth of the endpoints and an MLP accepts the
F st and the sampling endpoints to generate the complete pre-
dicted trajectory. Assuming that the weight of K Gaussian
distributions in GMM model is [w1, w2, . . . , wk], if we sam-
ple N endpoints, the points sampled by the k-th Gaussian
distribution is N ∗wk. Due to the strong representation abil-
ity of GMM, we can generate multi-modal trajectories. The
model is trained end-to-end by minimizing the loss function
LCAGN as:

LEP = −log
K∑

k=1

πkP ((xt, yt) | µ̂t, σ̂t, ρ̂t) , t = Tpred,

LAL =
1

Tpred − Tobs − 1

Tpred−1∑
t=Tobs+1

((x̂t − xt)2 + (ŷt − yt)2),

LCAGN = LEP + LAL,
(7)

where LEP means the negative log-likelihood loss for train-
ing the process of generating Gaussian mixture distribution.
LAL means the average trajectory L2 distance loss for train-
ing complete trajectory generation process. µ̂i

t is the mean,
σ̂i
t is the standard deviation, ρ̂it is the correlation co-efficient,

and πk is the weight of the k-th Gaussian distribution.

Experiments
Datasets. To evaluate our method, we conduct exten-
sive experiments on the ETH (Pellegrini et al. 2009) and
UCY (Lerner, Chrysanthou, and Lischinski 2007) datasets.
ETH includes ETH and HOTEL scenarios, and UCY in-
cludes UNIV, ZARA1, and ZARA2 scenarios. Following the

recent method (Sun, Jiang, and Lu 2020), we use the “leave-
one-out” strategy for training on four scenarios and testing
on the rest ones. We observe the trajectory of 8 frames (3.2
seconds) and predict the trajectory of the next 12 frames (4.8
seconds).
Evaluation Metrics. Following common practice (Zheng
et al. 2021), we employ average displacement error (ADE)
and final displacement error (FDE) for evaluation. ADE cal-
culates the average L2 distance between the ground truth and
the predicted trajectory. FDE computes the L2 distance be-
tween the ground-truth at the last step and corresponding
predicted trajectory.
Implementation Details. In our experiments, the embed-
ding dimension De, Df and Dfinal are set to 8, the number
of head H of the complementary block is set to 4, and the
head of the dual-path attention is set to 1. The dimension
of MLP in endpoint prediction is set to 64-128-256-128-64.
The threshold ξ is empirically set to 0.5, and the nonlinear
activation function of MLP is ReLU. The Adam optimizer
is used to train our model by 650 epochs with a learning rate
of 0.0003, decaying by 0.1 with an interval of 50. During
testing, 20 trajectories are sampled from the learned mixed
Gaussian distribution according to the weights of multiple
Gaussian distributions. The trajectory closest to the ground
truth is used to calculate ADE and FDE.

Quantitative Evaluation
We compare our method with the state-of-the-art meth-
ods, i.e., Linear regression (Alahi et al. 2016), Social-
LSTM (Alahi et al. 2016), Social-GAN-P (Gupta et al.
2018), SoPhie (Lee et al. 2017), PIF (Liang et al.
2019), RSBG (Sun, Jiang, and Lu 2020), STGAT (Huang
et al. 2019), Social-BiGAT (Kosaraju et al. 2019), Social-
STGCNN (Mohamed et al. 2020), STAR (Yu et al. 2020),
PECNet (Mangalam et al. 2020), TPNMS (Liang et al.
2021), SGCN (Shi et al. 2021), DMRGCN (Bae and Jeon
2021). The experimental results on ADE/FDE are presented
in Table 1, showing that our method exceeds all the com-
peting methods on both ETH and UCY. Compared with the
previous best method PECNet (Mangalam et al. 2020), our
method further improves the performance by 13.8% on ADE
and 10.4% on FDE. Meanwhile, compared with the fully
connected attention method STAR (Yu et al. 2020) and the
sparse learning attention method SGCN (Shi et al. 2021),
our method has an average performance increase of 35.9%
on ADE and 43.4% on FDE. The underlying reason could be
that our method captures both frequent and peculiar modals
of data and thus achieves better performance.

Ablation Study
We conduct ablative experiments to verify the contribution
of each component of our CAGN. To validate the effec-
tiveness of our CAGN in spatial interaction and temporal
motion, we first employ the spatio-temporal feature method
widely used by previous methods such as Transformer (Yu
et al. 2020) (TF), LSTM (Alahi et al. 2016) (LSTM),
GCN (Mohamed et al. 2020) (GCN), and SparseGCN (Shi
et al. 2021) (SGCN) to replace dual-path complementary at-
tention module in our framework (CAGN). Then, we study



Model Venue Year ETH HOTEL UNIV ZARA1 ZARA2 AVG

Linear Regression CVPR 2016 1.33/2.94 0.39/0.72 0.82/1.59 0.62/1.21 0.77/1.48 0.79/1.59
Social-LSTM CVPR 2016 1.09/2.35 0.79/1.76 0.67/1.40 0.47/1.00 0.56/1.17 0.72/1.54
Social-GAN-P CVPR 2018 0.87/1.62 0.67/1.37 0.76/1.52 0.35/0.68 0.42/0.84 0.61/1.21

SoPhie CVPR 2019 0.70/1.43 0.76/1.67 0.54/1.24 0.30/0.63 0.38/0.78 0.51/1.15
PIF CVPR 2019 0.73/1.65 0.30/0.59 0.60/1.27 0.38/0.81 0.31/0.68 0.46/1.00

STGAT ICCV 2019 0.68/1.29 0.68/1.40 0.57/1.29 0.29/0.60 0.37/0.75 0.52/1.07
Social-BiGAT NeurIPS 2019 0.69/1.29 0.49/1.01 0.55/1.32 0.30/0.62 0.36/0.75 0.48/1.00

RSBG CVPR 2020 0.80/1.53 0.33/0.64 0.59/1.25 0.40/0.86 0.30/0.65 0.48/0.99
Social-STGCNN CVPR 2020 0.64/1.11 0.49/0.85 0.44/0.79 0.34/0.53 0.30/0.48 0.44/0.75

STAR ECCV 2020 0.56/1.11 0.26/0.50 0.52/1.15 0.41/0.90 0.31/0.71 0.41/0.87
PECNet ECCV 2020 0.54/0.87 0.18/0.24 0.35/0.60 0.22/0.39 0.17/0.30 0.29/0.48
TPNMS AAAI 2021 0.52/0.89 0.22/0.39 0.55/1.13 0.35/0.70 0.27/0.56 0.38/0.73
SGCN CVPR 2021 0.63/1.03 0.32/0.55 0.37/0.70 0.29/0.53 0.25/0.45 0.37/0.65

DMRGCN AAAI 2021 0.60/1.09 0.21/0.30 0.35/0.63 0.29/0.47 0.25/0.41 0.34/0.58
CAGN(Ours) AAAI 2022 0.41/0.65 0.13/0.23 0.32/0.54 0.21/0.38 0.16/0.33 0.25/0.43

Table 1: Compare our CAGN with other state-of-the-art methods on ETH and UCY for ADE/FDE. Lower is better.

Spatial Temporal Gate GMM ETH HOTEL UNIV ZARA1 ZARA2 AVG

(1) GCN CAGN X X 0.78/1.33 0.32/0.55 0.44/0.77 0.34/0.57 0.30/0.46 0.44/0.74
(2) SGCN CAGN X X 0.54/0.76 0.15/0.27 0.37/0.65 0.32/0.49 0.22/0.38 0.32/0.51
(3) TF CAGN X X 0.55/0.77 0.20/0.32 0.39/0.68 0.30/0.48 0.25/0.43 0.34/0.54
(4) CAGN LSTM X X 0.74/1.23 0.26/0.46 0.60/0.89 0.33/0.55 0.29/0.49 0.50/0.72
(5) CAGN TF X X 0.52/0.74 0.16/0.30 0.37/0.62 0.33/0.47 0.25/0.40 0.33/0.51
(6) CAGN CAGN % X 0.45/0.67 0.13/0.23 0.35/0.60 0.25/0.41 0.18/0.35 0.27/0.45
(7) CAGN CAGN X % 0.45/0.67 0.13/0.22 0.33/0.56 0.22/0.39 0.21/0.37 0.27/0.44
(8) CAGN CAGN X X 0.41/0.65 0.13/0.23 0.32/0.54 0.21/0.38 0.16/0.33 0.25/0.43

Table 2: Ablation study. We replace the temporal and spatial modules of our method with other methods in existing work.

the effect of the gated network by using the gated module
and fusing the dual-path features with equal weights. Fi-
nally, we replace the GMM model with the Gaussian dis-
tribution used in Social-STGCNN (Mohamed et al. 2020)
and SGCN (Shi et al. 2021).

As shown in Table 2, the comparison between (8) and
(1), (2) and (3) shows that the proposed CAGN framework
is better than previous methods in modeling spatial interac-
tion. The effectiveness of CAGN in extracting temporal mo-
tion is also proved by comparing (8) with (4) and (5). The
comparison between (8) and (6) shows that a gated network
can combine the dual-path attention adaptively to improve
the prediction. Meanwhile, the comparison between (8) and
(7) indicates GMM is more suitable for pedestrian trajectory
prediction because the multiple distributions of GMM can
model the multimodality of future trajectory. Since the traf-
fic scenarios in the HOTEL are relatively simple and there
are few changes in pedestrian movement, solely CAGN is
able to model these simple scenarios. This leads to the im-
provements of both the gated network and GMM are limited.

Besides, we experimentally verify the influence of the or-
der of spatial and temporal modules in supplementary mate-
rials.

Qualitative Evaluation
Trajectory Prediction. In order to clearly exhibit the im-
provement of our CAGN in prediction, we compare the vi-

sualization results between our proposed CAGN and the re-
cent SGCN (Shi et al. 2021) in different scenarios, as shown
in Figure 4. We choose the examples with the smallest ADE
in the 20 predicted trajectories for comparison.

The visualization results on ETH and HOTEL show that
our CAGN can better handle the encounter and walking to-
gether between pedestrians in relatively simple scenarios. In
addition, since our CAGN leverages diverse attention and
combines with GMM, the predicted results are more accu-
rate and smoother than previous works. In particular, the
FDE in ETH and HOTEL in Table 1 also demonstrates the
improvement of our CAGN. For the more complex scenarios
in UNIV and ZARA, both our CAGN and SGCN can pro-
duce promising prediction results for pedestrians with slow
speed and small changes in direction. For large changes in
direction, illustrated at the top right-hand corner of ZARA in
Figure 4, our CAGN can capture this peculiar situation, i.e.,
pedestrian turning, which validates the effectiveness of our
CAGN. We provide more visualization results in the supple-
mentary materials.
Complementary Attention. We visualize the proposed
complementary attention process in Figure 5. In order to il-
lustrate the strength and relationship of pedestrians’ interac-
tion under multiple conditions through the attention value,
we use J and O− J in the intermediate process as the visu-
alization results.

Specifically, Figure 5 (a) indicates our CAGN is capable
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Figure 4: Visualization about performance. We visualize the pedestrian trajectory prediction, selecting the best result in 20
samples in different scenarios.

Figure 5: Visualization about inverse attention. We visualize the values of normal and inverse attention to show how our CAGN
guides the model to learn different pedestrian movements.

of handling diversity and randomness, namely it does not in-
troduce redundant randomness into a simple trajectory path
because our gated module can adaptively integrate differ-
ent randomness. It can be observed our CAGN prevents the
noise generated by redundant randomness from negatively
affecting the prediction results in simple scenes.

In Figure 5 (b) and (c), the red pedestrians have similar
historical trajectories and social interactions with the other
four pedestrians. Our CAGN is able to fully model the dif-
ferent interactions represented by the attention score. The in-
verse attention matrix is set to pay more attention to its own
motion while ignoring the influence of the others. There-
fore, whether the pedestrian’s choice is to avoid others tem-
porarily or change the long-term movement trend normally,
our CAGN can still capture the corresponding tendencies in
multiple possible endpoints.

In general, our CAGN is not only capable of strengthen-
ing the modeling of diverse scenarios, but also ensuring the
accuracy of trajectory prediction in simple scenarios through
the gated module. More analysis results will be provided in
the supplementary materials.
Gated Network. We shows the average weights of the Nor-
mal/Inverse Gate of each module for the structure of S-T-S-
T mentioned in supplementary material in Table 3, in which
the results show that the gate values of two Spatial/Temporal
modules tend to be the same for the same dataset. Besides,

the average gate value can not well show the adaptive selec-
tion for every person, so we further visualize the distribution
of gate value Figure 6.

Table 3 ETH HOTEL UNIV ZARA1 ZARA2

First Spatial 0.51/0.49 0.48/0.52 0.48/0.52 0.48/0.52 0.58/0.42
Second Spatial 0.52/0.48 0.48/0.52 0.49/0.51 0.49/0.51 0.53/0.47
First Temporal 0.46/0.54 0.53/0.47 0.49/0.51 0.52/0.48 0.49/0.51

Second Temporal 0.46/0.54 0.51/0.49 0.44/0.56 0.46/0.54 0.50/0.50

Table 3: The average weights of the Normal/Inverse Gate

Figure 6: The distribution of gate value.
Conclusion

We propose a complementary attention gated network for
trajectory prediction, which models both the frequent and
peculiar attention in spatial attention and temporal motion
by a complementary attention mechanism. Subsequently, the
learned normal and inverse attention are fused by learnable
weights to obtain diverse attention. Extensive experimental
results show our method achieves better performance than
competing methods. It is expected that our proposed com-
plementary attention can also apply in other diversified pre-
diction tasks besides of pedestrian trajectory prediction.
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